The Simulation of Urban-Scale Evacuation: The Swinley Forest Fire Prof Ed Galea, Dr A.Veeraswamy, Mr L. Filippidis and Dr P.J.Lawrence FSEG University of Greenwich

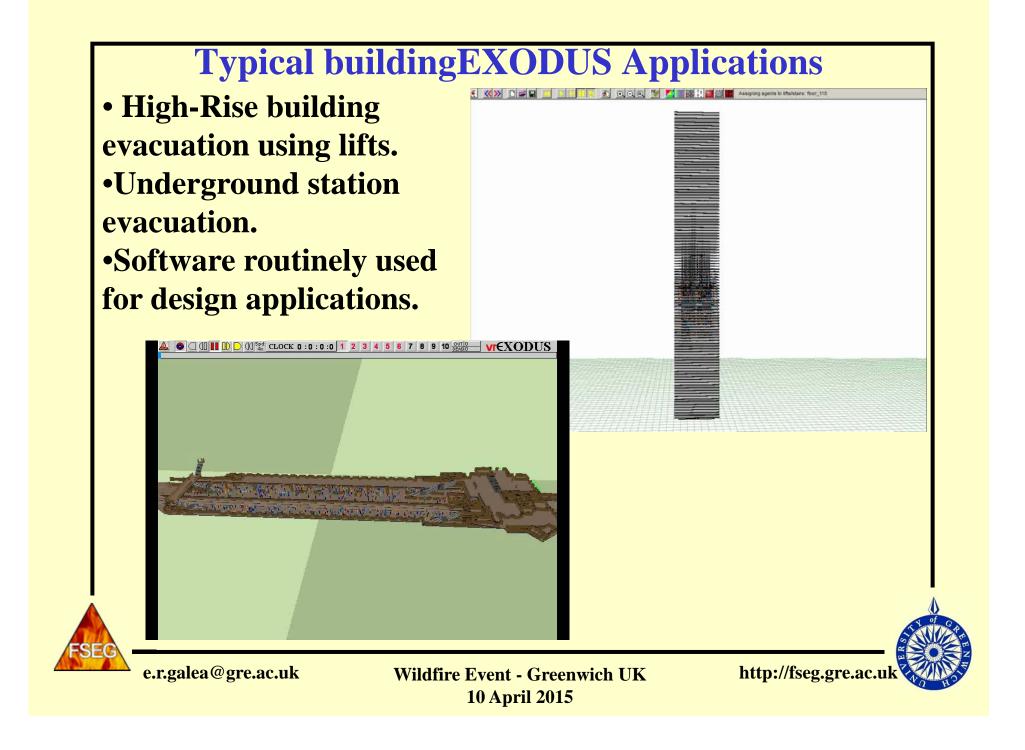
Evacuation in Large Scale Emergencies

- Due to global warming, extreme weather events in the UK are increasing:
 - with this comes an increased threat of floods, an estimated 3.6 million people will be at risk of flooding by 2050.
 - warmer and drier conditions and more frequent and longer-lasting heat waves also raise the risk of wild fires.
- In the past 4 years there have been on average 45,000 wildfires each year attended by the fire and rescue services in Great Britain.
- The fire risk is compounded by the UK's higher population density, which means that fires are more likely to encroach into urban environments posing a threat to life.
- These events will increase the frequency with which communities will need to be evacuated.
- To improve population resilience it is necessary to make appropriate plans for large-scale population evacuation resulting from natural or manmade emergency situations.

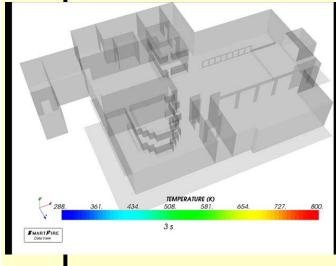
Evacuation in Large Scale Emergencies As part of planning, for a given range of scenarios it is necessary to:

- Estimate the time required to evacuate a region,
- Determine optimal evacuation routes,
- Identify the best locations for refuge areas, and,
- Prioritise evacuation regions deployment of emergency services.
- Incident managers must also be able to quickly adapt emergency plans in light of real-time developments such as:
 - Actual or forecast loss of evacuation routes,
 - Changing hazard development,
 - Availability of resources
- Urban-scale evacuation simulation using multi-agent models offers:
 - Emergency planners a means to develop and test evacuation procedures before an emergency,
 - Incident managers real-time support to determine the best evacuation procedures to adopt during an on-going emergency.

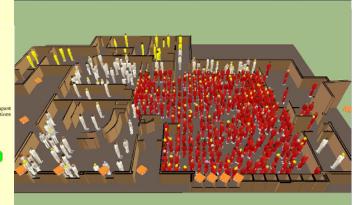
EXODUS Software


- Developed by FSEG and under constant development since 1989
- Agent based model with Rule Based
 Behaviour.
 OC
 - Behaviour is adaptive
 - Some rules stochastic.
- Behaviour model considers:
 - People-people
 - People-fire
 - People-Structure
- EXODUS unique features include:
 - ability to simulate impact of heat, smoke and toxic gases on evacuation capability of individuals
 - ability to include interaction of authorities with population
- FSEG

Wildfire Event - Greenwich UK 10 April 2015



http://fseg.gre.ac.u



buildingEXODUS and SMARTFIRE simulation of Station Nightclub fire
Link fire simulation directly with evacuation analysis
Directly expose agents to developing hazard environment

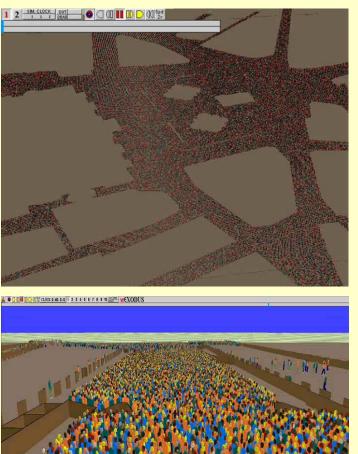
•Predict fatalities and injury levels.

1 SM CLOCK OUT 8 1 2 3 4 5 6 7 8 9 10 A VIEXODUS

Last survivor evacuates after approx 127 seconds.
Simulation predicts :

•84 fatalities compared with 100 in actual incident.

•25 serious injuries, of which 6 are life threatening.

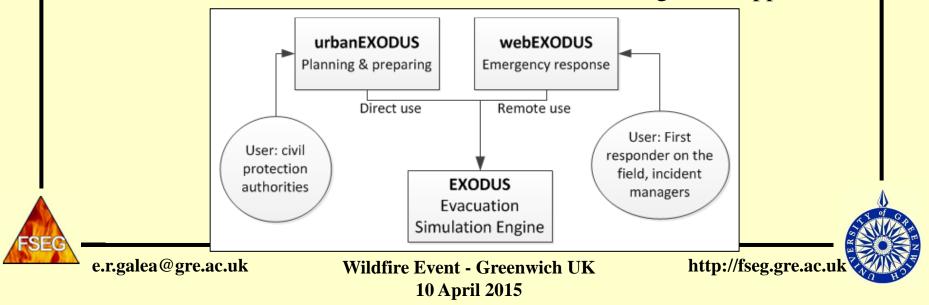

e.r.galea@gre.ac.uk

Wildfire Event - Greenwich UK 10 April 2015 http://fseg.gre.ac.uk

Large external crowd simulation

• Hypothetical incident in Trafalgar Square: 125,000+ people simulation

Love Parade Disaster
reconstruction: 100,000
people simulation.

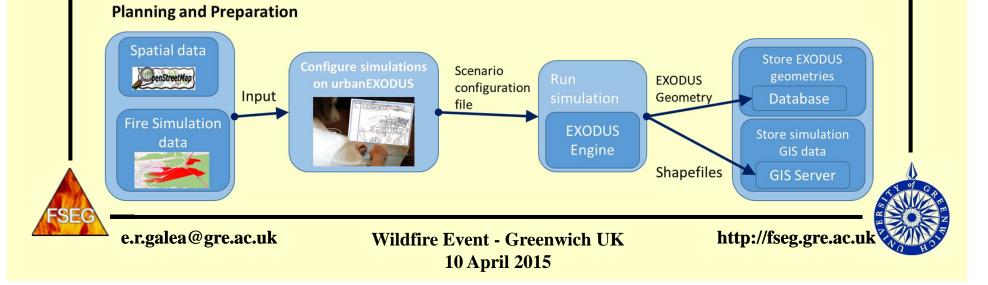


e.r.galea@gre.ac.uk

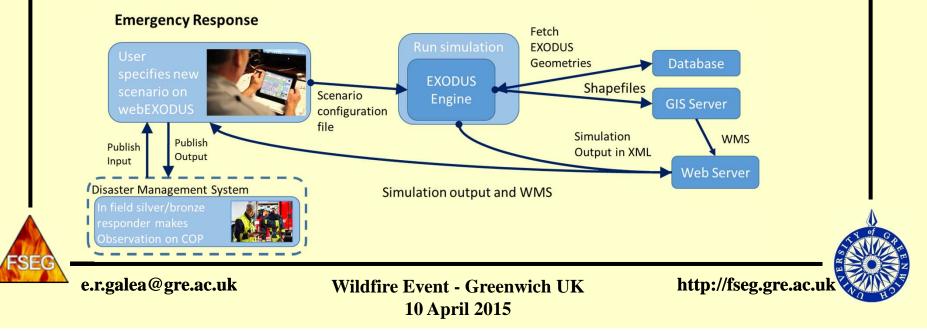
Wildfire Event - Greenwich UK 10 April 2015 http://fseg.gre.ac.uk

Large Scale Emergency Planning and Management

- As part of an EU FP7 project called IDIRA, a prototype version of the EXODUS software was developed for use in large-scale urban emergency applications.
- Intended applications include: wildfire, floods, tsunami, earthquakes, etc.
- Software is intended to assist in planning large-scale movement of people and for real-time use to assist in management.
- Two versions envisaged:
 - urbanEXODUS for use in planning applications
 - webEXODUS for use in real-time incident management applications


Proto-Type Features Developed as part of IDIRA

- EXODUS extended to incorporate GIS data (e.g. maps from OSM) and GIS data formats (e.g. shapefiles storing population distribution and density)
- Established a semi-automatic method of converting geospatial vector data (Open Street Maps) to EXODUS geometry data
- Extended fine network spatial representation within EXODUS to include: Course Nodes and Continuous Spatial representations.
 - Enables more efficient representation of very large urban spaces.
- Developed a Web UI allowing non-expert users to:
 - Enter scenario data and configure scenarios
 - Remote management of EXODUS simulations
 - Automatically analyse evacuation simulation results with ability to identify regions that developed critical congestion
 - Ability to integrate with modern web based GIS Crisis Management systems to provide support for real-time incident management.


e.r.galea@gre.ac.uk

urbanEXODUS prototype

- Define and explore evacuation scenarios for planning purposes
- User defines:
 - evacuation region, refuge locations, populations, evolving hazards.
- The evacuation region and scenario is constructed.
- Explore various what-if scenarios including:
 - variations in population characteristics and distribution, route availability, hazard locations, evacuation procedures, etc
- Establish evacuation efficiency for a given scenario.
- Save configurations and scenarios for real-time use

- webEXODUS prototype Pre-incident: urbanEXODUS used to define procedures for a range of scenarios, create libraries of physical region and scenarios.
- During-incident: webEXODUS retrieves most similar library case.
- Incident managers can quickly modify an existing scenario or set up a new scenario
- First responders in the field can dynamically update route availability, hazard spread, population distribution.
- Changes to the planned scenario dynamically updated to determine impact on procedures – faster than real time.

Swinley Forest Fire

- uEX used to simulate hypothetical evacuation associated with the Swinley forest fire.
- Fire simulation based on real incident but assumed slightly different weather conditions to assess the danger to nearby built up area
- Fire simulation based on real meteorological data on 2 May 2011 (fuel maps, ignition locations, wind direction)
- Four evacuation scenarios were examined simulating different evacuation routes adopted by the at-risk population.
- Purpose of study to assess the available safety margins associated with each of the possible evacuation routes.

SWINLEY FOREST FIRE

- Swinley forest fire was the largest in Berkshire's history
 - 5 May 2011, 300 hectares of forest
 - Very close to built up areas
 - 1220 people directly affected: TRL: 800, Business Estate: 200, Pub: 200, Residential dwellings: 20
 - Close to the high-security Broadmoor Hospital

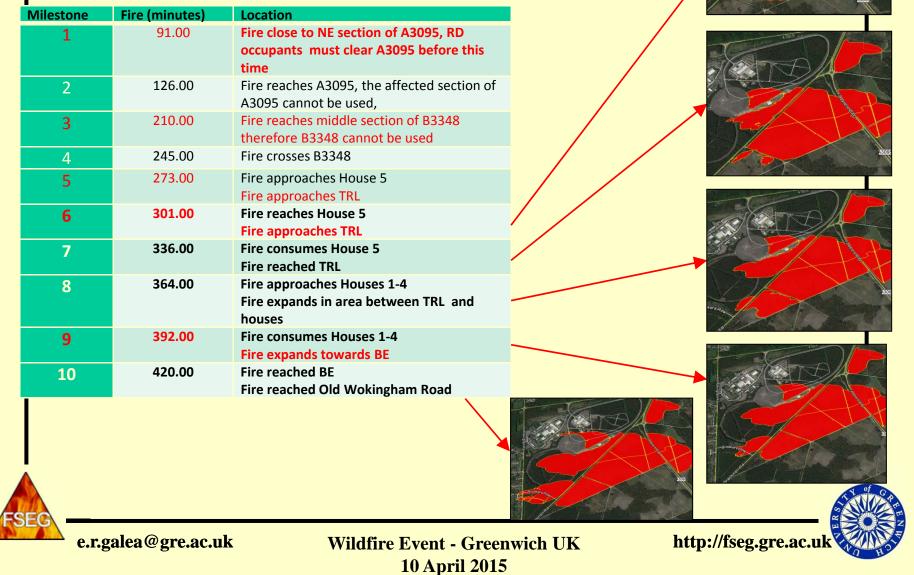
A3095

Broadmoor Hospital

Event - Greenwich UK 10 April 2015


SWINLEY FOREST FIRE

- Conditions were variable on the day.
- Concerned of repercussions if wind changed.
- Spread of fire modelled using Prometheus by Tom Smith KCL
 - Considered what would have happened if wind changed direction.
 - How long to evacuate threatened population?


Actual region burnt

e.r.galea@gre.ac.uk

•		eria used to Region ass within 500 Safety mar	rgin = time for fire front to be within gion - time at which last person passes
Mi	ilestone	Fire (minutes)	Location
	1	91.00	Fire close to NE section of A3095, RD occupants must clear A3095 before this time
	2	126.00	Fire reaches A3095, the affected section of A3095 cannot be used,
	3	210.00	Fire reaches middle section of B3348 therefore B3348 cannot be used
	4	245.00	Fire crosses B3348
	5	273.00	Fire approaches House 5 Fire approaches TRL
	6	301.00	Fire reaches House 5 Fire approaches TRL
	7	336.00	Fire consumes House 5 Fire reached TRL
	8	364.00	Fire approaches Houses 1-4 Fire expands in area between TRL and houses
	9	392.00	Fire consumes Houses 1-4 Fire expands towards BE
FS	10	420.00	Fire reached BE Fire reached Old Wokingham Road
	e.r.g	alea@gre.ac.uk	Wildfire Event - Greenwich 10 April 2015

Simulated Fire evolution – from 301 minutes to 420 minutes

Evacuation Sequence

- For simplicity, assume evacuation and fire spread start at the same time.
 - In reality, evacuation initiation starts some time after fire starts
 - This delay should be considered when evaluating size of safety margin.
- TRL Evacuation: Initiated by phone call at t=0s, RT=1–2min
- BE Evacuation: Initiated by phone call at t=0s, RT=1–2 min
- Pub Evacuation: Initiated by phone call at t=0s, RT=0.5–1 min
- RD Evacuation: Initiated by police door to door, requires
 - 5 min for police to reach first house,
 - 1 min required for police to reach next house, etc.
 - Once alerted, occupants require 5 min to get ready.

e.r.galea@gre.ac.uk

Wildfire Event - Greenwich UK 10 April 2015

http://fseg.gre.ac.uk

Evacuation Scenario 1: Most Direct Routes adopted

TRL:

• Main exit, turn right onto B3430, go to Assembly Area

Business Estate:

• Main exit, turn right and right onto B3430, go to Assembly Area.

Pub:

• Exit, turn left onto B3430, go to Assembly Area.

Residential Dwellings:

• Follow B3348 and then A3095 towards the pub, turn left onto B3430, go to Assembly Area.

e.r.galea@gre.ac.uk

Wildfire Event - Greenwich UK 10 April 2015 http://fseg.gre.ac.uk

Evacuation Scenario 2: TRL avoids using main entrance to allow emergency vehicles access

TRL:

• Main exit, left onto path towards and through Business Estate, follow then same path as Business Estate

Business Estate:

• Main exit, turn right and right onto B3430, go to Assembly Area.

Pub:

• Exit, turn left onto B3430, go to Assembly Area.

Residential Dwellings:

• Follow B3348 and then A3095 towards the pub, turn left onto B3430, go to Assembly Area.

e.r.galea@gre.ac.uk

Evacuation Scenario 3: Most direct route adopted EXCEPT RD who take Old Wokingham Road due to advance of fire front threatening B3348.

TRL:

• Main exit, turn right onto B3430, go to Assembly Area

Business Estate:

• Main exit, turn right and right onto B3430, go to Assembly Area.

Pub:

• Exit, turn left onto B3430, go to Assembly Area.

Residential Dwellings:

• Follow B3348 (only isolated house) and then Old Wokingham Road towards the Business Estate, turn right onto B3430, go to Assembly Area.

Evacuation Scenario 4: TRL avoids using main entrance to allow emergency vehicles access AND RD take Old Wokingham Road due to advance of fire front threatening B3348.

TRL:

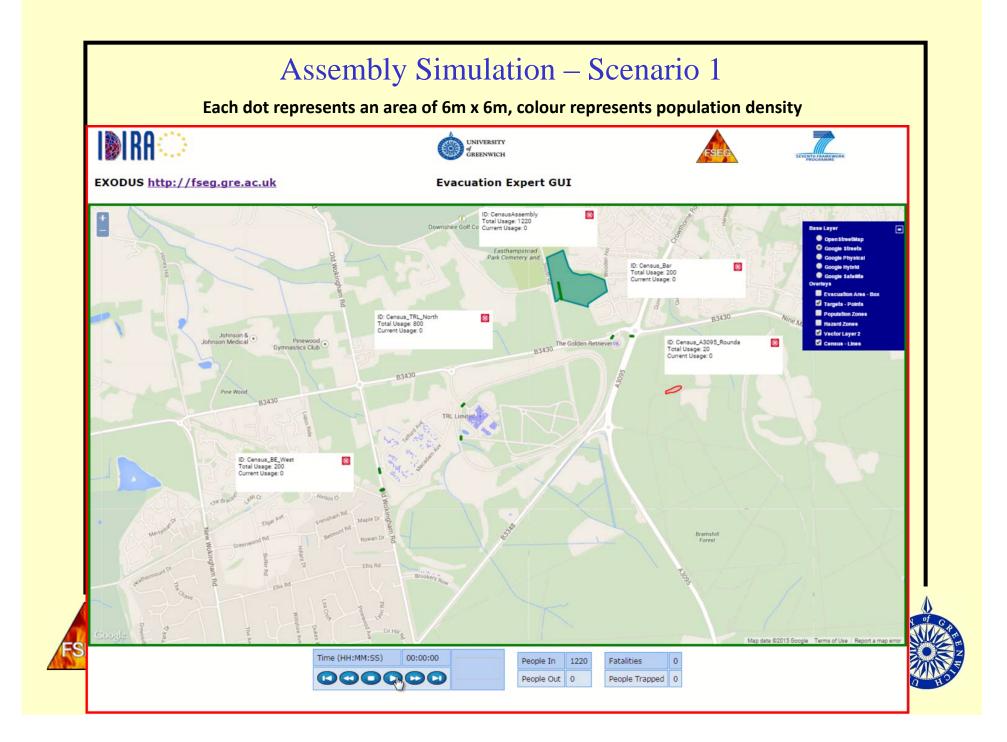
• Main exit, left onto path towards and through Business Estate, follow then same path as Business Estate

Business Estate:

• Main exit, turn right and right onto B3430, go to Assembly Area.

Pub:

• Exit, turn left onto B3430, go to Assembly Area.


Residential Dwellings:

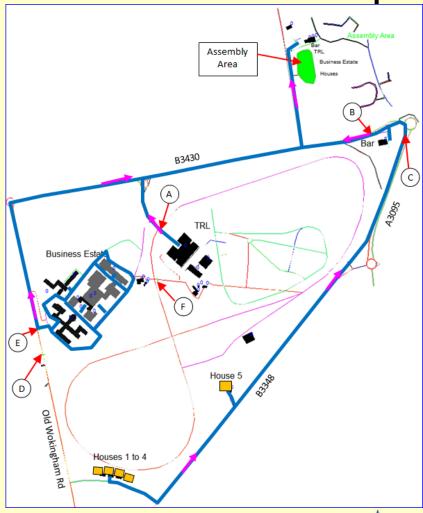
• Follow B3348 (only isolated house) and then Old Wokingham Road towards the Business Estate, turn right onto B3430, go to Assembly Area.

FSEG

e.r.galea@gre.ac.uk

Safety Margins – Scenario 1

Safety of Pub


- Pub clears point (B) at 4 min 28 sec.
- Pub assembles at 18 min 38 sec.
- Fire approaches A3095 at 91 min (milestone 1).
- Pub has safety margin of 86 minutes.

Safety of TRL

- TRL clears point (A) in 10 min 48 sec.
- TRL assembles at 35 min 26 sec.
- Fire approaches TRL at 301 min (milestone 6).
- TRL has a safety margin of 290 min.

Safety of Business Estate

- BE clears point (E) at 13 min 11 sec.
- BE assembles at 51 min 36 sec.
- Fire approaches BE at 392 min (milestone 9).
- **BE has a safety margin of 378 min** Safety of Residential Dwellings
- RD clear safe point (C) at 53 min 52 sec.
- RD assemble at 1 hr 11 min 32 sec.
- Fire approaches A3095 at 91 min (milestone 1).
- RD have a safety margin of 37 min.
- Fire reaches A3095 at 126 min, a critical point deeming that section of the road is unusable.

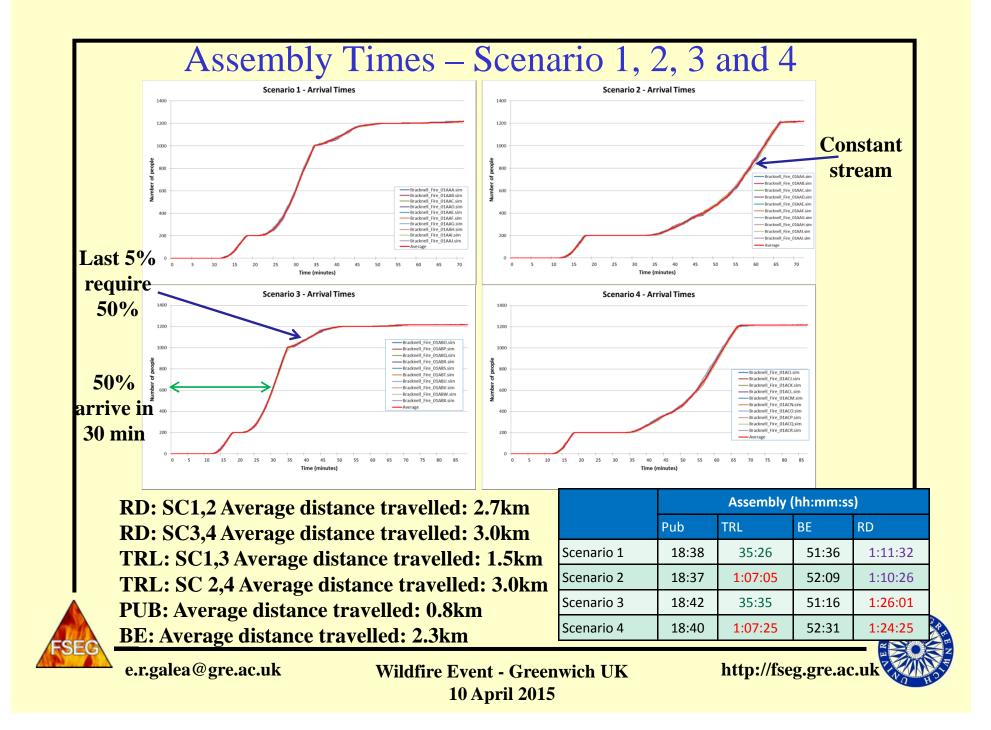
e.r.galea@gre.ac.uk

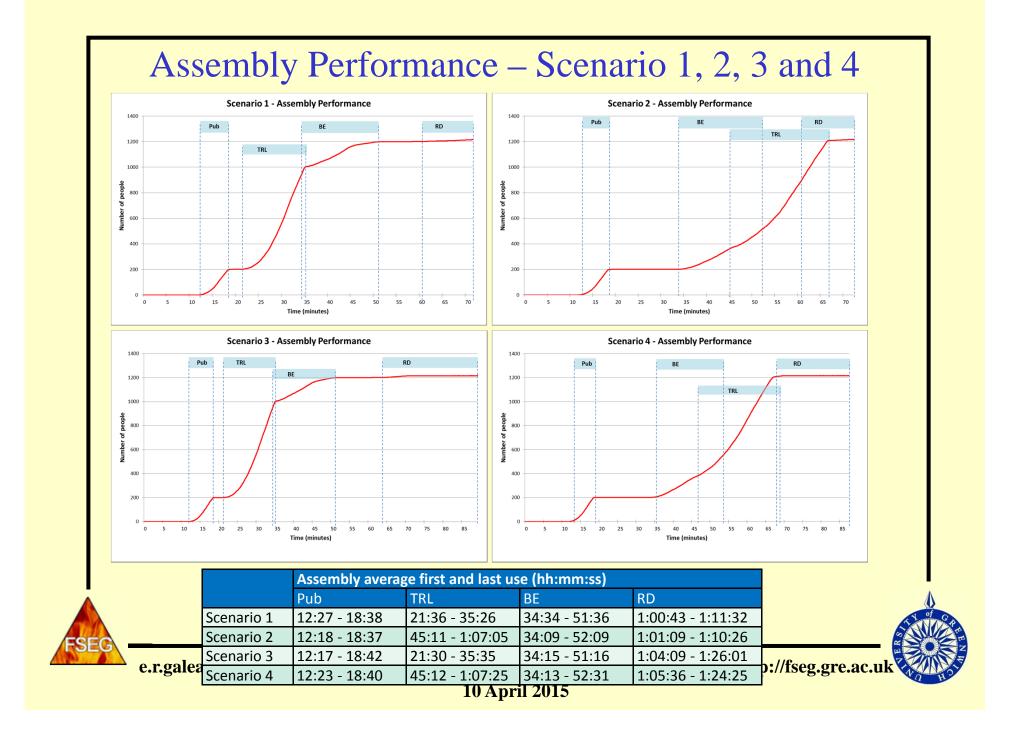
Conge	stion of	on Eva	cuation	n Rout	es
CWT/PET	Sc1 (%)	Sc2 (%)	Sc3 (%)	Sc4 (%)	
TRL	7.2	5.7	7.2	5.7	
BE	1.2	1.3	1.2	1.3	
Pub	5.7	5.6	5.7	5.6	

- Relatively small amounts of congestion experienced on evacuation routes
 - Congestion is not an issue in any of the scenarios.
- TRL pop experienced greatest levels of congestion in SC1/3 when they take the direct route to the assembly area.
 - However, only waste 7% of travel time in congestion.
- BE pop experience marginally greater levels of congestion in SC2/4
 - Occurs when the TRL join them on their evacuation route.
 - However, BE waste less than 2% of evacuation time in congestion.

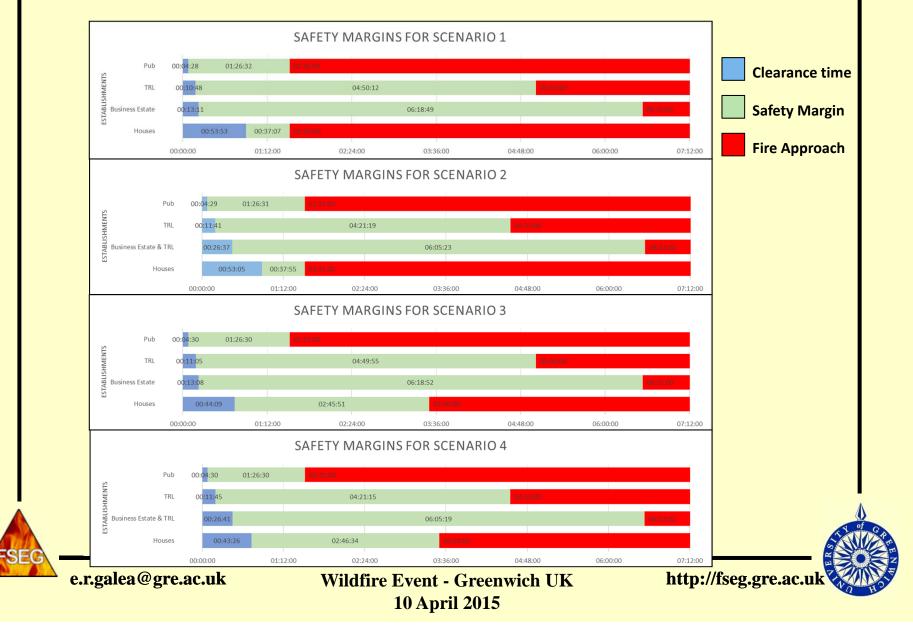
Assembly Performance

Proportion Assembled	50% (610)	80% (976)	95% (1159)	100% (1220)
Scenario 1	00:30:56	00:35:05	00:45:19	01:11:45
Scenario 2	00:55:22	01:02:30	01:05:58	01:10:54
Scenario 3	00:30:55	00:35:06	00:45:29	01:26:14
Scenario 4	00:55:20	01:02:40	00:59:00	01:24:38


• In SC 3:


- 50% of the population arrive in 30min must be prepared asap.
- 95% of the population are assembled in just over 45 min.
- Last 5% require 50% of the total assembly time.

• In SC2:


- 50% of the population arrive in 55min more time to prepare.
- 95% of the population are assembled in 1hr 6 min.
- Last 5% require just 5 min or 7% of the assembly time.

Swinley Forest Fire – Safety Margins – Scenario 1, 2, 3 and 4

Evacuation Scenario Comparison									
		Assembly (hh:mm:ss)				Safety Margin (min)			
	Pub	TRL	BE	RD	Pub	TRL	BE	RD	
Scenario 1	18:38	35:26	51:36	1:11:32	86	290	378	37	
Scenario 2	18:37	1:07:05	52:09	1:10:26	86	261	365	37	
Scenario 3	18:42	35:35	51:16	1:26:01	86	289	378	165	
Scenario 4	18:40	1:07:25	52:31	1:24:25	86	261	365	166	

- Longest distance travelled is 3.0 km, by:
 - RD occupants in SC3,4
 - TRL occupants in SC2,4
- FIRST to assemble always from PUB, LAST always from RD
- Minimum safety margins are :
 - 37 min incurred by the RD in SC1&2
 - 86 min incurred by the Pub in SC3&4
- Maximum safety margin always for BE, always greater than 365 min
- SC3 is the best option as it provides the maximum safety margin for each population group, even though it also produces:
 - LONGEST assembly time and MAX travel distance for RD

Evacuation Scenario Comparison

- Due to the likely delay between fire initiation and start of the evacuation, SC1&2 unlikely to be viable due to small safety margin.
 - Unlikely to be possible to alert the RD in time to make this a viable evacuation strategy.
- SC3 provides the largest safety margins for the entire population, but results in the RD having to travel the greatest distance and will result in the longest overall assembly time.
- In SC3,
 - PUB should be prioritised to be alerted first as they have the shortest SAFETY MARGIN 86 min.
 - Next at risk group are the RD they have a safety margin of 165 min.
- If unable to use the main entrance road to TRL (SC2&4), diverting the TRL population through the BE:
 - Doubles travel distance for TRL from 1.5km to 3.0km
 - Doubles assembly time for TRL from 35min to 67min
 - Decreases TRL safety margin by 30 min to 260min
 - Marginally increases congestion experienced by BE population

- Use of urban-scale evacuation modelling tools allow 'WHAT-IF' scenarios to be examined prior to an incident occurring.
 - Enhances population resilience by enabling authorities to plan and evaluate possible evacuation procedures.
- Provides insight into:
 - Timeframes required to get population to safety.
 - Safety margins available for various at risk groups.
 - Viability of designated safety refuges.
 - Prioritise alerting of at-risk groups.
 - Assist in prioritisation of tasks for emergency services.
- Integration with crises management systems enables:
 - Unforeseen events to be taken into consideration during the incident in real-time.
 - Formulation of new procedures to accommodate real situation as opposed to planned situation.
 - Confirmation of command decisions.